トーラス グリッド

林檎はトーラスグリッド

初等幾何学におけるトーラス(英: torus, 複数形: tori)、円環面、輪環面は、円周を回転して得られる回転面である。

いくつかの文脈では、二つの単位円周の直積集合 S1 × S1(に適当な構造を入れたもの)を「トーラス」と定義する。特に、位相幾何学における「トーラス」は、直積位相を備えた S1 × S1 に同相な図形の総称として用いられ、種数 1 の閉曲面(英語版)(コンパクト二次元多様体)として特徴づけられる。このようなトーラスは三次元ユークリッド空間 R3 に位相的に埋め込めるが、各生成円をそれぞれ別の平面 R2 に埋め込んで、それら埋め込みを保つような直積空間としての「トーラス」をユークリッド空間に埋め込むことは R3 では不可能で、R4 で考える必要がある。これはクリフォードトーラス(英語版) と呼ばれる、四次元空間内の曲面を成す。

アニュラスはトーラスではない
混同すべきでない関連の深い図形として、トーラスに囲まれた領域(三次元図形)すなわち「中身の詰まったトーラス」(solid torus) を、トーラス体、輪環体、円環体などと(対してもとのトーラスをトーラス面 (toroid) と)呼ぶこともある。また、中身の詰まったトーラスを単に「トーラス」(toroid) と呼ぶ場合があるので注意が必要である。また、同様に「円環」などと呼ばれる別の図形アニュラス(annulus、環帯)とも混同してはならない。

フォローする